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ABSTRACT

A unified theory of the linear stability of the Roherts and Taylor type
of resistive intercharge and hallooning 1s presented. The affects of both
parallel and perpendicular viscosity as well as of finite shear and finite B8
are included 1n a MHD treatment of the problem. Xinctic effects are alsc
studicd. The "hybrid kinetic" model with Vlasov 1ions and guidinn center
electrons has bheen appropriately geaeralized to allow for electron-jon
colliaifons. The peometry is that of a plane slab with magnetic shear.
Toroidal curvature  offects are  saimulated by the introductlon of a
gravitational aceceleration &. which varfes alonpg the magnetie field 1ines.
Congidering the limlt of vaaiishing shear, we distinguisn three different types
of modes In the high perpendicular wave number 1imit as the magnitude of ; in
varfed with respect to a/l%; here a I8 a free parameter that simulates the
averape curvature end L fs the comection longth of the wsystem. Finite
viscoslty and fon kinetie effects on these modes are befnpg considorad. Inm the
cane of 4 confipurattion with f}nlrn ghear an expannfon ol the portinent
quantitied In bterms of Nermite Muaetions enables un to derfve a charactortintie
necular determtnant for the probleme  In the Timit ¢f laree 1. the  reafativce
Ge=made 1 obtalned sabject to viseous correctlonn.s An I boeomes fintte the

hallaoning mode reaultase Flaally, a numerieal  acheme hasn heen deyvined  to
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ga2lve the equations when all of the verious effects of 1interest are

simultaneously present.

I. Model: Using resistive MHD theory with an anisotrople pressure tensor
the reaistive 1interchange with parallel wavenumber kI ~ 0 and its special
form, the ballooning mode, with kI ~ 1/L are derived as limits nf a single
madel. Advantage 1s taken of the simplicity of the magnetized plane slab
geometry to simultaneously study the effects of both parallel and
perpendicular viscosity, finite shear and finite beta. Magnetic curvature

effocts are simulated by a gravitational acceleration!

2
2 Vi
G = G (= a + cost 2), nns—f_l‘—k"—-sos;— (1)
L Vevhte c

wvhere x, vy, 2 are Carteulan coordiantes, 1. 18 the connection leagth alo 4 A
magnetie fleld 1ine, v, vo, vy, are the thermal, redistive, and Al fGen speeds
defined with reapect to a characteriatic lenpth n. R. I8 the simulated  rading
of curvarure. § vh’vr, By - 7p"/“5. Poe B, are characteriatlic values of the
kinetle proasurs and of the strength of the confining fleld  respectivelye. «
fa a conutaut representing averape curviaturoe.

We wrilte {or the equilibrium mapgnetie feld

8 = (0, w0, w0 )

Al we deo not make any o prior! aomampt fon about the relative mapgnltude of Iia

two compouent .
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For the same simple geowmetry the effect of finite Larmor radius on
resistive interchanges 1s also studied. For thYis purpose the "hybrid kinetic"
model with Vlasov ions and gulding center electrons? is appropriately

genernlized to include electron-ion collisions.

II. Resistive MHD: We employ Maxwell’s equations along with the usual

resistive MHD set:

dy "

pE% = S(- B,Vp + JxB) + 2pGe, - uv-g (3)

Sg—'ti + y'Vp +ypVey = 0, E+ y<B =] (4)
where

vz = -3 Dlevehe Gevidey - gvew] + ulvg + v 2wyl 9

Il is the anisotropie pressuare tensore? We hve normal lzed velocity to Ver time

to a/vy, p to 2p . E to v.B

p top Btoh ,and } to a. We let h =

or o’ (14

Q(")/Iu(”)l and

3 o 8
. VV/Vh ! }'th 0 l' 0. y H() vih,vrvv'ul : "L/"I' vv - U./HD“

whoere iy and 1ty are the paraltel and perpeadicular coefficlenta of  viacoalty

reapeetivelys Vo conabdor "guaal=moden” of the form?
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£(1) = £(6x,2) exp[iK(B§°)z - Bgo)y) + wt] (6)

with 8<<1, K>>l. Using Eq. (6), operating with e,-VxVx on Fq. (3) we derive

the equation of motion perpendicular to the line of force

3 1 + ;222 3 - 2 (o)

T = = v ‘J—z——(l+sz 2yy
az l+azzz+m/KZB§°)zaz X 3 x

M »2 n
Y 0)2 ~2 2.2 2K T
-§-K" Bé) (1+s%29)% v, += =

vp{®(z)p = 0 (7)
2

Here s(x) = (n§°) B'§°l B‘éo)g§0))/(5;o) g(o)Y

; is the shear parameter. In

addition, we have defined

Q = 0+ 4:|' 6‘.—‘. YP(O)Q, @ = w3, K = Kﬂ(o)/ﬂgn)

Mz, Fzap@pple) 32 J Vv p = —— p(D)
2 yp(®F

Parnllel viscos{ty 18 neglected In Fqo (7) as It ean only introducoe

osclllation. However, this quantity plays an important role in the oquation

describiag parallel motlon

n( )', ')(U)“ 2 a) a n?
3 y_) s (l" V2K Iy = e R p i v, ‘H)
0 (l"‘“-(") "l u o J,—r 0;7 X \

We diatinpuisah the following canes of Intereoat:



=5-

A. Stationary Modesi;w=0: A critical pressure gradient i1s obtained for the

onset of ballooning (ul = 0):

Eso|c:(Q/K2)B§.°)2/(B§,°)2 + 8% |

Parallel wviscosity is secn to be responsible for the 2xistence of a threshold
which 1is nct possihle when resistivity is the only source of dissipation. The
shape of the mode at marginality has also been obtained and it would be useful

in the context of a quasilinear transport theory.

B. Growine Modes: w#0:

a. No fhear; s=N: This is appropriate for devices 1like Field Reversed
Theta Pinches and multipoles particularly in view of the fact that our

treatment 18 valid for finite beta. We define

a Y S b -~ n a - s P
q = 4Rzg(K3B£°) +w)li, g = GOIYp‘"', R = L.'n“éﬂ)

and examine the limits:

le q << |3 For Rzu < a we Fin, a1 viseorvsistive ballooening root

w = $~lpR? (&Png")) -Q)/(u - R%x) - 87" 0 +0(s™?) . (9)

. b Iy
For Rp = a, & "rosonant” mode

/7 )

R Y P R (E?ug”)" - d)""/kmlni“)" R“Jl - GsTh o+ oy (1)

and for Kyp >« an Hdeal fnterehanpe mode being acted on by dinalpatfon



—f=

w = 2g(R%g - a)/(MlB§°>ziz) + 0(s~1)y, (11)

(for M, k2 >> 0).

2. a > 1.2 For this case, the dispersion relation becomes a quintic
in w. Simple formulae are not very accurate. Using MACSYMA only two of the
roots are found to be growing. Large perpendicular viscosity combined with
small parallel wviscosity can stabilize a resistive ballooning-like root for
high and an ideal bellooning-like root for intermediate K.

In general u, is found to be effective in stabilizing these modes for

very amall values of ﬁ. viz. Sec. 2, however, for larger g it 1is

destabilizing. u; is always stahilizing and becomes most effcctive as K + «.

h. Firite ShontjA; # N: This case 18 1importent for shear satabllized

devices (Reversed Field Pinch), but also for tokamaks with her peaked
current profiles. We obtain simpl. analyti{c results using the "disconnected
mode approzimatlon"® and we make use of an expansion in terms of Hermite
functions to treat the general problem.

l« Negicctlng parallel (nertla and electromagnetic effectd we find  (for

w1 - (1H)) A+ .. forA << 1,

-~

C14Q)

TS ol B SR S N S N R (1)
(110)"
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where the tilde denotes norwalization to mg, the growth rate for the "twisted

slicing mode"d (u, # 0).

A

su S/( ap(1-a)2k?R2B{)2)
The first of Eq. (12) represents the G-mode limit, while the second 1s che
ballooning limit.

2. Letting v # 0 and using the same approximation as above as well ac
an expansion iIin terms of Hermite functions. we derive a secular infiaite
matrix determinant for the problem. Using Jjust the first term of this

determinant we find very roughly (as L + =)

we-h e

KB(O)

predicting a cutoff K. Letting, for instance. Ml ~ 10'3, S ~ iN® we find

K ~ 20 (g/3)}/2.

cutoff

3. Utilizing the expansrion in terms of Hermite functions, the general
Aystem of  Fqse (R) and (9) Is solved also. Successive disconnected mode
approximations are performed for calculating the elgenfunetions. The

particular 1terative scheme Involved displays fast converpgence. Growth rates

are found to he greatly suppressed with respect to the 8 = 0 case.

TTTe The Hvbrid Kineti~ Model
Carrent Hteravure on resfyative G=modes and halloening does not  address
the  Afects of Finftte ton lLarmor radlus (as compared to relevimt gradient

seale Tenpgtha)  hoevond  lowest  ordoer. A fully fon=kinotle treatment s
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necegsary in order to take into account the finiteness of the ion orbits and
the electrostatic nature of ion confinement. Such a treatment is important to
high temperaturc and high S regimes, which would bLe obtainable near or at
reactor conditions. Here we let r,, denote the thermal ion Larmor radius and
we assume ktLi ~ 0(l). We consider collisionless ions in static equilibrium.
They are characterized by an equilibrium distribution fio), which only depends
on the ion Hamiltonian H. 1It includes a gravitational potential according to
Eq. (1). Resistivity 1s assumed to be entirely due to collisions between
electrons and ions. HResistive effects manifest themselves only thrnough the
generalized ©Ohm‘s law. On the other hand pravity only affects the momentum

balance equation. We note that for our treatment to be correct we must have

tygl /v >>1 . (13)

Given Eq. (13), we can generalize the recently developed hybrid-kinetic
formalism of Ref. (2) to 1ineclude conatant resistivity and gravitatioa. We
linearize the ion and electron kinetic equations assuminz magnetically

confined electrons (|u| << w << a) but electrostatically confined ions

ce' TLe

(12] € w4y vy /a Flnite). Here w, denotes cyclotron frequencies and the

subscripts 1, e refer to the ions and electrons respectively. The confining

eleetric fleld 18 given hy

Vp 0) m
E(o) '-t;fﬂ—-—e—tn (14)

wheee N {8 tne unperturbed number densfty, mp the Lon nass, - the c¢leetronice

charge and g the pgravitatlonal acceleration. The detatled collligfonal
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processes needed in the presence of finite electrc pressure are approximated
by a BGK model .6

We hase our analysis on the followiqg equations.

a. The i1ion Vliasov equation, unexpanded.

b. Guiding center electrons with a BGF collision term.

c. The parallel component of Ohm’s law along with Faraday’s law.

We strees, however, that the present formalism is quite 1insensitive to
the sgpecific electrou model, which can equally well be chosen to be that cf a
massless, finite pressure resistive fluid.

Linearizing, we obtain a system of coupled eigenvalue equations f£from

momentum balance
v, x [(@xB{1) x B(O) 4+ (vxp(®)) x 3] w v x {(1) + legﬂ) (15)

a£{®
o

is the genroalized inertial force denaity and

where %(” z - mefd3g(g(°) + yxﬁ(o))

ag, (©)
all

ML) = myp(pgy + 4y ovn{®WN! [adv

is a known function of (T - E(o) E("))Oi- From Ohm’s law we have

(0 = vEev1an(0) < yMey) £ wy (A evxg ) nle) 4 {(0)yxp (1Y) (16)

More we hiave uged the gaupoe

¢(I) - "III,"N 4 \l:.‘ﬁ(l) , (|7)
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assuming Re(w) # 0, and we have defined the mathematical variable 5 win

E(l) . Vx(glxg(o) + EHE(O)) = Vxé(") . (18)

In addition, we employ

%ﬁ; - mi!“é% &L - (Pé}) + EL'VPéo)) +mi&icg t e !'E(O)EI y (19)

ris seen to be an integral over the equiiibr.um ion orbits

N e (E(® + wp®)) + g .
t mg " - = -~

¢(1) is the perturbed electrostatic potential.

In deriving Fqs. (15) and (16), no assumptions were made concerning
maanetic shear but terms of O(gz, ng) have been dropped.

As a simple example we conalder *he case of small shear, B§°)/B(°) ~ €,
and nepliglble temperature ratio T,/T;. Here Y = rLi“Ia/ax InjE] " << 1.

Then to leading order in €2 we have’

1
Vl b [mZpQL + mp(1+§ﬂ)!H-V§l =

Vo (v @) 4o en(@))up (D] (20)

=V x lrggve - emppfady o K|
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(1) . (o) n 2q(1)
B vx (g, x8(°)) + AL 72y (21)

where we assumed Ka >> 1. y 1s a resonant integwal’ only depending on £,

o
for lula/v_ >> 1, and Vg 1s the cross-field drift velocity.
Tt i3 seen from Fgq. (2N) that a leading order resonance occu-c due to the

effect of gravity. If we arbitrarily neglect it then Eqs. (20} und (21) can

be solved using standard methods of resistive MHD.
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